Markoff-Rosenberger triples in arithmetic progression

نویسندگان

  • Enrique González-Jiménez
  • José M. Tornero
چکیده

Article history: Received 22 March 2012 Accepted 12 November 2012 Available online 27 November 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markoff–rosenberger Triples in Geometric Progression

We study solutions of the Markoff–Rosenberger equation ax + by + cz = dxyz whose coordinates belong to the ring of integers of a number field and form a geometric progression.

متن کامل

On the Uniqueness Conjecture for Markoff Triples

ν(θ) = inf{c : |θ − p/q| < c/q for infinitely many reduced fractions p/q}. The set of values {νi} of the Markoff function in the range ν(θ) > 1/3 is called the Markoff spectrum [7], which is a denumerable infinite set and νi ↓ 1/3. An other definition of the Markoff spectrum uses the integer solutions of the Diophantine equation x + y + z = 3xyz. (1) A solution (x, y, z) to this equation with 0...

متن کامل

A Simple Proof of the Markoff Conjecture for Prime Powers

We give a simple and independent proof of the result of Jack Button and Paul Schmutz that the Markoff conjecture on the uniqueness of the Markoff triples (a, b, c) where a ≤ b ≤ c holds whenever c is a prime power.

متن کامل

Avoiding triples in arithmetic progression ∗

Some patterns cannot be avoided ad infinitum. A well-known example of such a pattern is an arithmetic progression in partitions of natural numbers. We observed that in order to avoid arithmetic progressions, other patterns emerge. A visualization is presented that reveals these patterns. We capitalize on the observed patterns by constructing techniques to avoid arithmetic progressions. More for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2013